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Abstract. By solving the Bogoliubov–de Gennes equation self-consistently, we compute
transport properties of a one dimensional superconducting island with a delta-function normal
scatterer at the centre. The calculatedI–V characteristics show significant structure, arising from
the competition between scattering processes at the boundaries of the island and modification
of the order parameter by quasi-particles and superflow. At a certain critical current, the order
parameter exhibits a quasi-first-order transition to the normal state, smeared by the finite system
size. At this point, the differential conductance is negative and can have a magnitude greater
than 2e2/h, despite the fact that there is only a single scattering channel.

It is well established that phase-coherent Andreev scattering provides the key to
understanding transport in mesoscopic normal–superconducting hybrid structures and that
quantitative descriptions can be obtained using either quasi-classical or multiple-scattering
methods [1–11].

In the absence of superconductivity, if a currentI flows between two normal reservoirs
at a potential differenceV , then the differential conductanceG = ∂I/∂V is given by
the Landauer formulaG = (2e2/h)T0, which predicts that the conductance per channel
possesses an upper bound of 2e2/h. In the linear-response limit, the multi-channel scattering
theory proposed in [12] and [13] predicts that the upper bound persists, even in the presence
of superconductivity, whereas the conductance per channel between a normal (N) and a
superconducting (S) reservoir possesses an upper bound of 4e2/h. The aim of this letter is
to provide a self-consistent description of phase coherent transport in such structures, which
shows that beyond the linear-response region, when the order parameter is modified by the
current, these bounds can be grossly violated.

Figure 1 shows an N–S–I–S–N structure, formed when two normal (N) reservoirs
of chemical potentialsµ1 and µ2, are attached to a scattering region comprising two
superconducting regions (S) connected to an insulating region. Figure 2 shows a
corresponding N–S–I–S structure, formed when normal and superconducting reservoirs
connect to an S–I–S scattering region. In each case the superconductors possess a common
spatially independent condensate chemical potentialµ. The system lengthL is assumed
to be smaller than a quasi-particle phase breaking length and therefore a description which
incorporates quasi-particle phase coherence throughout the system is appropriate. The main
question of interest is whether or not such a description yields significant structure which
one would not obtain by performing a non-self-consistent calculation.

To obtain a self-consistent description, we solve the Bogoliubov–de Gennes equation( H(x) 1(x)
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Figure 1. This diagram schematically shows the N–S–I–S–N structure, where quasi-particles
impinge upon the scattering region from the left reservoir over an energy rangeµ1–µ and
quasi-holes impinge upon the scattering region from the right reservoir over an energy range
µ–µ2.

Figure 2. This diagram schematically shows the N–S–I–S structure.

with

H(x) = − h̄

2m
∂2
x + U0(x) − µ (2)

whereµ is the condensate chemical potential,U0(x) is the normal potential and1(x) =
|1(x)|eiθ(x) the superconducting order parameter, given by

1(x) = V (x)
∑
n>0
σ

(vn(x)u∗
n(x))

(
1
2 − 〈〈γ †

nσ γnσ 〉〉) . (3)

In this expression, the sum is over energiesEn less than a cut-offEc due to the fact
that the electron–electron interaction (V ) is only attractive over a range of energies near the
Fermi surface,γ †

nσ creates a Bogoliubov quasi-particle and double angular brackets indicate
a trace over the density matrix of the system. Since we solve the Bogoliubov–de Gennes
equation in the presence of external leads, the trace is over scattering states of the open
system.

In what follows the pairing potentialV (x) is chosen to be equal to a constant for
0 < x < L and to vanish outside this interval. The normal scattering potential is chosen
to be u(x)/µ = (2Z/kF )δ(x − L/2), where µ is the condensate chemical potential in
the absence of an applied voltage and we definekF = (2mµ/h̄2)1/2. For a given choice
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of L, Z, Ec, V0 and reservoir potentials, both the magnitude and phase of1(x) will be
computed at all points in space, along with the condensate chemical potentialµ.

Since we are interested in an open system, the above equation involves sums over all
left- and right-incoming scattering states, integrated over allE < Ec. At zero temperature,
for the caseµ1 > µ > µ2, quasi-particle states corresponding to incoming electrons (holes)
are incident from reservoir 1 (2) over energy intervalsµ1–µ (µ–µ2). Assuming these
intervals are less than the cut-offEc and if a scattering state of energyE corresponding to
an incident quasi-particle of typeα from reservoiri has a particle (hole) amplitudeuiα(x, E)

(viα(x, E)), then the above equation reduces to

1(x) = V (x)

2∑
i=1

1

2

∫ Ec

0
((u∗

i−(x, E)vi−(x, E)) + (u∗
i+(x, E)vi+(x, E)) dE

−V (x)

∫ µ1−µ

0
(u∗

1+(x, E)v1+(x, E)) dE

−V (x)

∫ µ−µ2

0
(u∗

2−(x, E)v2−(x, E)) dE. (4)

To calculate scattering solutions in the region occupied by the island, we start from an
initial guess for1(x) and µ and divide the interval 0< x < L into a large number of
small cells of size much less thank−1

F , within which 1(x) andu(x) are assumed constant.
If T (x0) is the matrix obtained by multiplying together transfer matrices associated with all
cells in the interval 0< x < x0 and then as outlined in appendix 1 of [13], the scattering
matrix S of the island can be obtained from the transfer matrixT (L). Within the external
leads, the most general eigenstate ofH belonging to eigen-energy E is a linear superposition
of plane waves. For a given incoming plane wave, a knowledge ofS yields the plane wave
amplitudes on the left-hand side of the island, which can be combined withT (x) to yield the
wavefunction at all pointsx. Given these solutions,1(x) is re-evaluated using the above
equation and a new choice forµ is obtained by insisting that the currentsj1 andj2 in the
leads attached to reservoirs 1 and 2 are equal. This process is repeated until the root mean
square difference between successive order parameters is less than 1% of the magnitude of
1(L/2).

Before proceeding with a fully self-consistent calculation it is useful to examine a
simpler problem, which is not fully self-consistent, but captures much of the physics
contained in an exact solution [14]. To this end, consider the N–S–I–S structure of figure
2, which consists of a normal lead attached to a clean superconducting lead with a single
normal scattering potential placed deep inside the superconductor at a positionL � ξ .
To obtain insight into the fully self-consistent problem, we first implement a quasi-self-
consistent scheme in which1(x) = |1| for x > 0 and1(x) = 0 for x < 0. The currentI
and the order parameter|1| are then obtained by solving the following equations:

I = N(0)vF

∫ µ1−µ

0
(1 − R0 + Ra) dE (5)

where R0 is the probability of normal reflection andRa is the probability of Andreev
reflection and
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3
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√
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)2

 (6)

where Ic is the critical current of the superconducting lead and|10| is the value of|1|
whenI = 0.
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Figure 3. This graph plots the current–voltage characteristics of the structure shown in figure 2.
The chosen value ofIc merely affects the position of the step in the current–voltage relation.

By solving equations (5) and (6) one obtains the current–voltage characteristic shown in
figure 3. The cross-over from the high-sub-gap-conductance region (a) to region (b) occurs
when the voltage differenceµ1 − µ exceeds|1|. The vertical drop (c) occurs when the
currentI exceedsIc, at which point the value of|1| given by equation (6) undergoes a
first-order transition to zero. Finally, in region (d), the system is normal and exhibits the
same above-gap conductance as region (b). To obtain the quasi-self-consistent results of
figure 3,10, Ic, Z andkF were imposed quantities. For all energies betweenµ1 andµ, R0

andRa were calculated andI computed from equation (5). Finally,|1| was obtained from
(6) and the procedure iterated to convergence.

The vertical region (c) of figure 3 corresponds to a region of infinite, negative differential
conductance and we now ask whether or not this arises within an exact solution for a finite
sample.

Figure 4. The magnitude (top) and the phase (bottom) of1(x) for an N–S–N structure with
two applied voltagesµ1 − µ2 = 0 (thick solid line) andµ1 − µ2 = 0.005µ (thin dashed line).

To this end, consider the structure of figure 1 which consists of a scattering region of
length L = 1500/kµ, wherekµ = √

2mµ/h̄. When Z = 0 (i.e., no normal scattering
potential) we have calculated the self-consistent values of the order parameter, for various
applied voltages. Figure 4 shows the profile of|1(x)| (top) and the order parameter phase
θ(x) (bottom) forµ1 − µ2 = 0 (thick solid line) andµ1 − µ2 = 0.005µ (thin dashed line).
For finite voltages (thin dashed line) a phase gradient arises naturally from a self-consistent
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calculation. As shown in figure 4 the computed phase gradient is almost a constant, even
though the order parameter and supercurrent are suppressed near the interfaces. This is
consistent with charge conservation, because a finite quasi-particle current penetrates a
distance of the order of the superconducting coherence lengthξ into the superconductor.

Figure 5 shows the corresponding results when a normal scattering potential is placed
at the centre of the superconductor withZ = 1.1. The impurity introduces Friedel-like
oscillations in the magnitude of the superconducting order parameter [15, 16].

Figure 5. The magnitude (top) and the phase (bottom) of1(x) for an N–S–I–S–N structure for
an applied voltage ofµ1 − µ2 = 0.005µ, Z = 1.1.

Figure 6. Four graphs depicting the differential conductance verses the applied voltage for four
different values ofZ: Z = 0 (top left); Z = 1.1 (top right); Z = 1.8 (bottom left);Z = 2.6
(bottom right).

Figure 6 shows the self-consistent differential conductance as a function of the applied
voltage for four different values ofZ. ForZ > 0 there is a dramatic drop inδG at a voltage
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which, as shown in figure 7, corresponds to the critical current of the superconductor and
hence to a dramatic fall in the order parameter.

Figure 7. A graph depicting the change in|1| versus the applied voltage for three different
values ofZ: Z = 1.1 (squares);Z = 1.8 (circles);Z = 2.6 (triangles).|1| is defined to be the
average value of|1(x)| over the whole scattering region.

Figure 8. A graph depicting the change in|1| versus the current for three different values of
Z: Z = 1.1 (squares);Z = 1.8 (circles);Z = 2.6 (triangles). The solid line is the G–L function
for the order parameter as a function of the supercurrent, given by equation (5).

For completeness, we also show, in figure 8, a plot of the self-consistent value of|1|
versus the self-consistently determined current. The solid line is a plot of the Ginzburg–
Landau result (equation (6)). Since the latter is an expression for the supercurrent only,
it vanishes when|1| = 0. In contrast the numerical results yield the total current, which
remains finite, even in the limit|1| = 0.
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In contrast with the quasi-self-consistent, infinite negative differential conductance shown
in figure 3, the self-consistent calculations of figure 6 show that the conductance of a
superconducting dot remains finite. This is a consequence of the smearing of a first-order
transition to the normal state, due to the finite size of the dot. Nevertheless the negative
conductance has a magnitude which exceeds the quantum of conductance 2e2/h, despite
the fact that the external leads possess only a single scattering channel. This effect arises
only for intermediate values ofZ. For Z = 0 the effect vanishes, because for an N–S–N
metallic structure with10/µ � 1, the normal state conductance is almost identical to the
conductance in the superconducting state. For largeZ (or largeL/ξ ) Ic would be greater
than the critical current of the Josephson weak link formed by the delta-function barrier,
hence no stationary self-consistent solution can be found.

Although the analysis presented in this paper is restricted to one dimension, we believe
that the above effect will carry over to two- or three-dimensional structures with a planar
barrier at 90◦ to the direction of current flow, provided that oscillations on the scale of
the Fermi wavelength are ignored. (Such oscillations are neglected by quasi-classical
descriptions of N–S interfaces.) In this case the scattering states are of the form(

ui
n(x)

vi
n(x)

)
χi(y, z)

wherei sums over all open channels. In the presence ofM such open channels (atE = 0),
ignoring oscillations on the scale ofk−1

F yields for the superconducting order parameter

1(x) = (1/M)

M∑
i=1

1i(x)

with

1i(x) = V (x)
∑
n>0
σ

(vi
n(x)ui

n

∗
(x))

(
1
2 − 〈〈γ †

niσ γniσ 〉〉
)

. (7)

Since the sum overn is restricted to energies close toE = 0, 1i(x) is almost channel
independent and the self-consistent value of1(x) is almost identical to the one-dimensional
result. As a consequence, although the rapid oscillations present in figure 5 will not be
present in higher dimensions, we expect that the slower (Tomasch) oscillations will survive
and the differential conductance, shown in figure 6, will scale with the number of open
channels.
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